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Abstract

The National Aero-Space Plane (NASP) has renewed
interest in hypersonic flight and hot-structures technol-

ogy development for both the airframe and engine. The

NASA Dryden Thermostructures Research Facility is a

unique national facility that has been designed to con-
duct thermal-mechanical tests on aircraft and aircraft

components by simulating the flight thermal environ-

ment in the laboratory. The layout of the facility is pre-

sented, which includes descriptions of the high-bay test
area, the instrumentation laboratories, the mechanical

loading systems, and the state-of-the-art closed-loop

thermal control system. The hot-structures test ca-

pability of the facility is emphasized by the Mach-3

thermal simulation conducted on the YF-12 airplane.
The Liquid-Hydrogen Structural Test Facility, which is

presently in the design phase, will provide the capabil-

ity of thermally testing structures containing hydrogen.

Introduction

A renewed interest in hypersonic flight, as evidenced

by the National Aero-Space Plane (NASP), has re-
focused attention on the two government-owned na-

tional hot-structures test facilities. One facility is the

Hot Structures Laboratory (Building 65) located at

the Wright Laboratories, Wright-Patterson Air Force
Base, Ohio. 1 The other is the Thermostructures Re-

search Facility (TRF) located at NASA Dryden Flight
Research Facility, Edwards, California. This paper de-

scribes the test capabilities of the TRF with focus on

the hot-structures test capability.

The principal mission of NASA Dryden is to con-

duct flight research on high-performance aircraft. His-

torically, the X-15 flight research aircraft program was

one of the most significant, and it was also the driver
in developing and implementing a hot-structures test

capability at NASA Dryden. Thermal stress-related

operational problems on the X-15, such as the inad-
vertent deployment of the main landing gear and nose

landing gear during high-speed flight and a concern

over the possible overloading of the cockpit canopy

hooks at high speeds, required extensive laboratory
thermostructural testing both to qualify design modi-

fications and to certify the aircraft for flight at higher
Mach numbers.

An important element in thermostructural testing

is the thermal control system. A description of the

closed-loop digital data acquisition and adaptive con-
trol system, along with a discussion of the state of

the art in hot-structures measurement systems, vital

to conducting successful thermal-mechanical tests, is

presented. An overview of the YF-12A flight loads pro-
gram featuring the laboratory thermal simulation of a

Mach-3 flight profile illustrates the role that the TRF

plays in support of flight testing hypersonic aircraft.

The paper will conclude with a description of the

Liquid Hydrogen Structural Test Facility (LHSTF),

which is currently in the design phase and is targeted

to become operational in 1995. This facility will ex-

pand the hot-structures test capability of the TRF to

thermal testing structures containing liquid hydrogen.

The Building

The TRF was constructed at Dryden in 1966 to pro-

vide the capability for combined loading and heating
tests of structures ranging in size from components to

complete flight vehicles, and for calibration and evalu-

ation of flight loads instrumentation under the condi-

tions expected in flight. Figure 1 is a photograph of
the front view of the TRF showing the main entrance

to the high-bay test area and the adjacent office areas
and instrumentation laboratories.

Figure 2 is a diagram of the layout of the facility.

The TRF consists of a large, high-bay test area with



adjacent laboratories,offices,and storage area. The

120-ft-by-150-ftreinforcedconcrete floorcontains tie-

down slotsto anchor testsetups and isaccessedfrom

the entry ramp by a 136-ft-by-40-ftdoor. A 5-ton rail

crane servicesthe entiretest area floor.Systems for

mechanical, thermal, and vibrationtestingof struc-

tures, as well as for data acquisitionand test con-

trol,are incorporated in the facility.The data acqui-

sitionand testcontrolroom islocatedon the second

flooroverlookingthe main testarea. Instrumentation

and electronicsupport laboratoriesare alsoprovided.

Flame-plasma spray equipment islocatedin the stor-

age area; and the universalload frame machines are

housed in an area separate from the high-bay test area.

Mechanical Loading Systems

The TRF has three closed-loop electrohydraulic uni-

versal testing machines, each with a digital engineering

unit display and an X-Y recorder. The maximum load

capacities of the three machines are 10,000, 100,000,
and 220,000 lb. The machines are used for static

Ioadings of coupons and structural components at
ambient and elevated temperatures. Figure 3 is a pho-

tograph of the 220,000-1b machine applying a compres-
Sion load to a 2-ft-by-2-ft titanium metal matrix com-

posite buckling-critical panel.

For mechanical loads tests on large structural com-

ponents and for applying loads to aircraft, the TRF

has a 40-channel electrohydraulic closed-loop system.

Figure 4 shows a schematic diagram of the closed-loop

system. An inventory of hydraulic actuators, with ca-

pacities up to 60,000-1b tension and 80,000-1b compres-

sion, and load cells with up to 50,000-1b capacity, is
available.

custom-contoured heater system. Quartz lamp heaters
can achieve heat fluxes up to 100 Btu/ft2-sec, temper-

ature rates up to 150 °F/sec, and maximum tempera-
tures of 3000 °F. The TRF data acquisition and control

system (DACS) and the control of these custom heater

systems will be discussed in the next section.

Data Acquisition and Control System

The TRF DACS is a state-of-the-art system that has

an addressable, gain programmable, self-calibrating,
1280-channel data acquisition capability. _ The system

has built-in redundancy and can handle three simul-
taneous test activities while recording and displaying

real-time data. Data may be replayed after the test

and displayed in a variety of graphic and alphanumeric

formats. All test setup data entry and system checkout

functions are designed to be user-friendly.

The DACS primary function is to provide the means
to conduct real-time simulations of thermal and me-

chanical loads on full-scale aircraft and aircraft com-

ponents. The real-time system resources may be ded-

icated to a single test or may be shared among as

many as three independent test activities conducted
simultaneously. The system provides the capability

to acquire data from analog transducers such as ac-
celerometers, flowmeters, heat flux meters, load cells,

potentiometers, pressure gages, resistance temperature
devices, strain gages, and thermocouples.

Figure 6 shows a schematic diagram of the DACS,

including an illustration of the closed-loop thermal con-

trol technique for heating a test specimen. The DACS

has a distributed processing architecture that uses five

classes of computers:

Heating Systems

Severalovens with programmable controlare avail-

able in the TRF for heatingcoupons and panels up to

2 ftby 2 ftin size.One oven has a temperature range

of -100 to 600 °F with liquidnitrogen as the cooling

medium. Two microprocessor-controlledovens, with

interiordimensions of approximately 2 ftby 2 ftby

2 ft,are also availablefor conducting apparent strain

teststo temperatures up to 2000 °F. One ofthese two

ovens has been modified so that itsatmosphere can be

purged using nitrogen or helium gas. A thirdtemper-

ature rate-controlledoven isused to testcoupons over

a temperature range of -320 to 600 °F. Six ovens are

the noncyclictype and are manually set to maintain

temperature. Maximum temperatures availablewith

these ovens range from 650 to 1300 °F.

Custom-contoured radiant heaters using quartz

lamps are used to heat the largerstructuralcompo-

nents.Figure 5 isa photograph ofthe YF-12 forebody
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The host or centralcomputing facility,locatedin

the controlroom, for database management and

testoperation and monitoring.

Small mobile or "satellite" computers, located ei-

ther near the test specimen in the high-bay test

area or at a remote site, for small independent test

operation and for input-output control in a larger
test.

An analysis computer, located in the control room,
for test scenario definition, real-time data analy-

sis and display, and extended data reduction and

analysis functions.

A power control computer to perform thermal out-

put functions and to distribute the thermal power
loads.

A function generator computer to provide mechan-
ical output functions (fig. 4).



TheDACShastwobasicoperatingmodes-- inde-
pendenttestandcombinedtest. In the independent
testmode,atestisrunononeofthreesatellitecomput-
ersthatarephysicallyconnectedto thehostcomputer.
Thetestmaybecontrolledandmonitoredeitherfrom
thehigh-baytestareausingthesatellitecomputeror
fromthe controlroomusingthehostcomputer.In
this independenttestmode,channelcapacitiesinclude
512data,100thermalcontrol,and12mechanicalcon-
trol channels.

In thecombinedtestmode,thehostcomputerand
onetothreesatellitecomputersareused.Thetestmay
bemonitoredandcontrolledonlybythehostcomputer
in thecontrolroom.In thismode,thechannelcapaci-
tiesareafunctionof thenumberofsatellitecomputers
usedandareshownin thetablebelow.

Channelcapacitiesforcombinedtest mode.

Thermal Mechanical
No. of Data control control

satellites channels channels channels

1 512 256 22

2 1024 512 40

3 1280 512 40

During a given test, all data channels are sampled

at the same rate. The sampling rate must be an in-

teger multiple of 4 samples/sec/channel, e.g., 4, 8, 12,
16, 20, 24. Thus a satellite in the independent test

mode, with the capacity to acquire 5120 samples/sec,

is able to acquire 20 samples/sec from 256 channels
or 16 samples/sec from 320 channels. The maximum

single-channel sampling rate that the DACS will sup-
port is 1280 samples/sec.

Temperature profiles for up to 512 thermal out-

puts are entered into the satellite computer systems
during test scenario definition, before test initiation.

Adaptive control algorithms are used to determine

the output levels required to conform to the supplied

profiles within allowable error limits. A power dis-

tribution algorithm is used to minimize power peaks.
During thermal control, the silicon-controlled rectifier

(SCR) power controller sends verification signals to the

thermal loads control subsystem (power control com-
puter, satellite computer, and host computer) after

the SCR has received each thermal power output com-

mand. These verification indicators are available every

0.25 sec. They signify either a successful or unsuccess-

ful power output for that channel during the alternat-

ing current cycle. A successful output means that ei-

ther a requested firing occurred or no firing occurred

because none was requested.

The test operator interactively controls the applica-

tion of the thermal loads defined in the profiles. The

capability to start, hold, and stop thermal loading is

provided. For static temperature control (in which a

thermal control subsystem is in a hold status), the mea-
sured temperatures axe within 4-0.5 percent or 4-5 °F,

whichever is greater, of the desired temperature over

the range from -300 to 2500 °F. For dynamic tem-
perature control, the measured temperature error is

dependent on the temperature change rate, as shown

in figure 7.

The DACS includes seven interactive workstations

with high-resolution, color-graphic displays. Thermal

control deviation displays and a choice of custom data

displays are available to the user in windows. Three

color printers for hard copies of information displayed

in windows on the display workstations are provided.

Instrumentation Laboratory

An important aspect of all research programs is ob-

taining high-quality experimental data. The TRF in-

strumentation laboratory is vital to obtaining high-

quality structural test data.

The instrumentation laboratory has two principal

functions. The first is an applications function that

provides for the installation of a variety of instru-
mentation on aircraft and structural test articles for

laboratory and flight testing. This includes state-of-

the-art bonded foil gages, weldable gages, and capac-

itive gages applied to materials such as aluminum, ti-

tanium, organic composites, and several of the nickel-
based super alloys.

The second function is conducting R&D with focus

on the development of strain measurement techniques

at extreme temperatures (cryogenic to 2000 °F) on ad-

vanced state-of-the-art materials including metal ma-

trix composites and carbon-carbon composites. The

P_D instrumentation laboratory is equipped with a

high-temperature strain-gage evaluation system (fig-

ure 8) with both resistance heating and a Marshall fur-

nace to characterize strain gages on various materials

at temperatures up to 2000 °F. Characterizing strain

gages involves tests for apparent strain, gage factor def-

inition and stability, drift, lead wire attachment and
lead wire resistance, strain transfer, etc. Plasma-flame

spray equipment is used to attach the high-temperature

strain sensors. Signal conditioning and data recording

systems, custom tailored for the instrumentation labo-

ratory, are used for test control and data recording and

analysis.

YF-12 Flight Research Program

Highlights

The largest, if not most complex, heating test con-
ducted in the TRF was the Mach-3 thermal simulation



test of the YF-12 airplane. The comprehensive YF-

12 flight loads research program, conducted during

the late 1960's and early 1970's, was the first at-

tempt at applying a thermal loads calibration tech-
nique to a flight vehicle. 3 Specific program objectives
included extending strain-gage load measurement to

high-performance aircraft, developing and demonstrat-

ing laboratory thermal simulation techniques, and eval-

uating state-of-the-art structural analysis computer

programs. There were five distinct phases to the pro-

gram: instrumentation, static loads tests, flight test,
laboratory heating tests, and flight data and analysis

correlation.

An objective of the instrumentation phase was to

design and develop a measurement system to provide
temperature and loads measurement in both the flight

environment and laboratory ground tests. Figures 9(a)

and (b) illustrate the YF-12 instrumentation system.

Figure 9(a) shows some of the 101 strain gage bridges
that were installed at three span locations in the left-

hand wing. Additional loads measurement locations

included three fuselage stations and all control surface
actuators for measuring hinge moment. A satisfactory

method for bonding thermocouples to titanium with a

conductive adhesive was developed in the TRF instru-

mentation laboratory. For flight measurements, 561

thermocouples and 499 additional thermocouples for

laboratory heating tests were installed. Figure 9(b)
shows the skin thermocouple locations for flight on the

upper surface of the left-hand wing.

Fifty-seven mechanically applied load conditions

were used to calibrate the strain gages installed on the
airplane. Figure 10 is a photograph of the airplane in

the TRF being subjected to one of the loading condi-

tions. The airplane was supported on its landing gear

throughout the calibration. As calibration loads were

applied, the static load in the main gear was held nearly

constant by seven reactive loads applied through con-

toured pads resting on the centerline of the upper fuse-

lage at various bulkhead locations. Equations for the

measurement of shear, bending moment, and torque
were derived for each wing station by using single-point
loads.

Having instrumented the airplane and calibrated the
strain-gage instrumentation for loads measurement,

the flight test phase of the program was undertaken.

Symmetrical pitch maneuvers were performed at each

flight condition at eight different Mach numbers. At
each Mach number, a maximum and minimum dy-

namic pressure was flown and a maximum and mini-

mum weight. Temperatures were measured at 449 skin

and 112 substructure locations. Figure 11 shows the

surface temperatures and isotherms at a high Mach

number cruise condition. From the figure it can be

seen that a complex ground heating system is needed

to simulate not only the heating rate but also the tem-

perature distribution over the surface of the airplane.

Flight data showed that the skin temperatures were at
radiation equilibrium temperature during cruise and

that the wing spars adjacent to the engine nacelle were
hotter than the skin. Since the spars were instrumented

with strain gages, it was imperative that the engine

heating effects be simulated during the ground heating
tests.

After the flight test phase, the airplane was prepared

for the laboratory heating tests. Figure 12 illustrates
the heater panel configuration used to encapsulate and

heat the 5000 ft 2 of surface area of the airplane. There

were two fore-body heaters, four center-body heaters,

and one large aft-body heater. In addition, a 42-in. di-

ameter cylindrical heater heated an area of 230 ft 2 on
the interior of the left-hand engine nacelle. Figure 13

is a photograph of the aft section of the YF-12 with

the aft heater removed and the "draw bridge" center-

body heaters raised. The tip of the engine nacelle
heater can be seen. The ventral fins were removed and

were not part of the heating tests. More than 16,000

quartz lamps divided into 470 thermal control zones

were used to simulate Mach-2.5, -2.75, and -3.0 flight

profile heating tests. The lead wire for some of the 470

control thermocouples installed on the external skin of

the airplane is visible. Figure 14 is a photograph of the

YF-12 airplane enclosed in the quartz lamp heaters in

preparation for a heating test.

Figure 15 is a rear-view photograph of the
YF-12 airplane during a Mach-3 thermal simulation

test. The bright glow at the left engine is caused by the

engine nacelle heater. Only the left-engine heat was
simulated because all of the strain-gage instrumenta-

tion was concentrated in the left wing, and none was

installed in the right wing. The maximum power used

during any of the tests was 3.5 MW. The YF-12 air-
plane was heated to high Mach number aerodynamic

heating conditions more than 20 times with only mi-

nor problems. After the laboratory heating, the air-

plane was returned to flight status and made numer-

ous research flights without any problems related to

the heating tests.

The YF-12 Flight Loads Research Program made un-

precedented contributions in the area of hot-structures

technology. These include the first Mach-3 thermal
simulation of a complete aircraft that incorporated

major advances in digital heating control and real-

time data displays, a demonstration and validation
of a thermal loads calibration technique, an appli-
cation of structures instrumentation in an elevated-

temperature flight environment, an evaluation of state-

of-the-art analytical codes, and an extensive documen-

tation of the entire program in a NASA report. Fi-

nally, the YF-12 flight research program demonstrated



the importantrole that the TRF plays in flight test-

ing a high-performance airplane subjected to signifi-
cant aerodynamic heating.

Liquid Hydrogen Structural Test

Facility

Current hypersonic aircraft concepts, such as the

NASP, will require the use of hydrogen as a fuel. This
dictates the development of new structural concepts

including reusable horizontal cryogenic fuel tanks and

actively cooled panels using the high-pressure hydrogen
fuel as the cooling medium. The integration of actively

cooled panels into the airframe will present unprece-

dented challenges in removing heat from the structure,

conditioning the hydrogen before burning it in the en-

gine, and the onboard flight control system monitoring
of the health and performance of the panels as a func-

tion of the flight environment.

Development of these new structural concepts re-

quires new facilities with new test capabilities. NASA

Dryden is building the LHSTF, that will initially

focus on providing a test capability for reusable

liquid-hydrogen fuel tanks. Figure 16 is a site

perspective of the LHSTF showing the major ele-
ments of the test complex. The test control cen-

ter and operations support building are located ap-
proximately 1200 ft from the test cell area. The

test cell area includes the test cell, a data acqui-

sition and power control building, a high-pressure

nitrogen and helium gas storage area, the liquid-
hydrogen storage area, and a 20-MW power
substation.

Figure 17 is conceptual view of the LHSTF test cell

with a 2000-gal liquid hydrogen tank. The test cell

interior is 40 ft wide, 60 ft long, and 40 ft high. The
test cell will have a nitrogen purged atmosphere to pre-

clude a fire or explosion should the test article rupture

during a test. Roof vents allow expanding hydrogen

gas to escape should a tank fail in a catastrophic man-

ner. The test cell will accommodate a 40,000-gal liquid

hydrogen tank. The thermal and mechanical loading

systems will be similar to those in the TRF. Initially,
20 MW power through 256 thermal control channels,

1000 data-recording channels, and 4 mechanical load

control channels will be available. The LHSTF project

is currently in the design phase. It is expected to be

operational at the beginning of fiscal year 1996.

Concluding Remarks

The Thermostructures Research Facility is a unique

national facility. It provides a test capability to de-
velop the techniques needed to perform ground-based

laboratory structural tests that simulate the flight en-

vironment. This environment includes flight profiles

in which aerodynamic heating is significant. Impor-

tant aspects of the Thermostructures Research Facil-

ity are its closed-loop control of heating and loading

and its high-temperature instrumentation development

laboratory.

The YF-12 flight loads program provided a means to

demonstrate the thermal loads calibration technique
for flight loads measurement and serves as an exam-

ple of the role the Thermostructures Research Facility

plays in flight testing aircraft subjected to aerodynamic

heating.

The National Aero-Space Plane program has both

generated a renewed interest in hypersonic flight and

identified the need for new structural concepts that in-

clude actively cooled structures and reusable cryogenic

fuel tanks. The Thermostructures Research Facility

is playing a major role in developing conventional hot

structural concepts for this class of vehicle. The Liq-

uid Hydrogen Structural Test Facility will play a major
role in developing reusable liquid hydrogen fuel tanks

and hydrogen-cooled structures.
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Fig. 1. The front view of the Thermostructures Research Facility.
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Fig. 2. The layout of the Thermostructures Research Facility.
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Fig. 3.
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Fig. 5. The YI'-12 forebody custom-contoured heater system.
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Fig. 11. Surface temperatures for the YF-12 at a high Maeh number cruise condition. Temperatures are in degrees

Kelvin (degrees Fahrenheit).
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Fig. 12. Heater panel configuration for the YF-12.

Fig. 13. The aft section of the YF-12.

10

(E 25426)



(E 25418)
Fig.14. TheYF-12enclosedbyheatersin preparationforheatingtest.

Fig.15. TheYF-12Mach-3heatingtest.
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The Liquid Hydrogen StructuralTest Facility.
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